Informacje o książce

Prosto do matury 2. Zakres podstawowy.

Nowa Era  /   Podręcznik do nauki

Rok wydania: 2016  
ISBN: 9788326725906

Odpowiedź:

Suma  początkowych wyrazów ciągu arytmetycznego  wyraża się wzorem

.

Przypomnijmy wzór ogólny ciągu arytmetycznego  

.

 

    

Korzystamy ze wzoru na sumę  początkowych wyrazów ciągu arytmetycznego:  

.

Różnica tego ciągu  jest równa

.

Wyraz  możemy zapisać jako

 

   

.

Wracamy do równania   i w miejsce  podstawiamy liczbę  

 

 

.


    

Korzystamy ze wzoru na sumę  początkowych wyrazów ciągu arytmetycznego 

.

Różnica tego ciągu  jest równa

.

Wyraz  możemy zapisać jako

 

 

  

 

.

Wracamy do równania  i w miejsce  podstawiamy liczbę   

 

.


    

Korzystamy ze wzoru na sumę  początkowych wyrazów ciągu arytmetycznego 

.

Różnica tego ciągu  jest równa

.

Wyraz  możemy zapisać jako

 

   

   

 .

Wracamy do równania   i w miejsce  podstawiamy  

 

 

 

 

 

Rozwiązujemy równanie kwadratowe z niewiadomą

 

 

Rozwiązaniem równania  jest liczba , ponieważ ciąg jest rosnący

.


    

Korzystamy ze wzoru na sumę  początkowych wyrazów ciągu arytmetycznego 

.

Różnica tego ciągu  jest równa

.

Wyraz  możemy zapisać jako

 

   

.

Wracamy do równania  i w miejsce  podstawiamy liczbę  

 

.


    

Korzystamy ze wzoru na sumę  początkowych wyrazów ciągu arytmetycznego 

.

Różnica tego ciągu  jest równa

.

Wyraz  możemy zapisać jako

 

 

 

   

 .

Wracamy do równania  i w miejsce  podstawiamy  

Rozwiązujemy równanie kwadratowe z niewiadomą

 

 

Rozwiązaniem równania  jest liczba , ponieważ ciąg jest rosnący

.



Pobierz zdjęcie
zdam.se
zdam.se